Descriptif de séquence en Technologie

Cycl	e	:4
------	---	----

FICHE ÉLÈVE

Seq : Les objets connectés

Séance 2 : Piloter une lampe à l'aide du clavier, puis par Bluetooth

<u>1ère PARTIE</u>:

Documents ressources :

Production finale attendue : Commander l'allumage de la diode par Bluetooth

<u>Travail à faire en ilot</u> :

🜩 Commander avec deux touches du clavier la diode

- Ne commander la diode qu'avec une seule touche
- ----- Commander la diode par Bluetooth

Partie 1 : Commander avec deux touches

Vous allez devoir programmer un système constitué :

- d'un module de commande Arduino ;
- d'un shield grove ;
- et d'un module LED Grove.

Identifier sur le croquis ci-dessous le module de commande (en rouge), le capteur (en vert) et l'actionneur (en bleu)

Comportement attendu du système :

- Si j'appuie sur la touche A du clavier alors la diode doit s'allumer ;
- Si j'appuie sur la touche E du clavier alors la diode doit s'éteindre ;

<u>Travail 1</u> : Compléter l'organigramme ci-dessous en complétant le texte des cases et en ajoutant les flèches manquantes :

Travail 2 : Programmer et piloter le système avec mBlock

- Brancher le module LED sur la broche D4 du shield Grove
- Brancher le module de commande Arduino sur un port USB de l'ordinateur
- Lancer l'application mBlock
- Mettez-vous en mode connecté

Connec Sélectionner le par port série (COM)	port de commu Arduino	v coms votre module
par WiFi (2,4GHz) par le réseau	>	
Téléverser le microprogramme de	e communication 2 -	Cliquer pour téléverser
Réinitialiser le programme par dé	faut >	
Régler le mode de microprogram	ime >	
Voir le fichier source		
Installer les pilotes Arduino		

- Programmer le système :
- Enregistrer votre travail.

Méthode :

- Le programme doit commencer par

quand la touche 🔽 🔽 est pressée

- Pensez à utiliser le bloc ci-dessous pour piloter le module de LED :

mettre l'état logique de la broche 4 à basy

Partie 2 : Commander avec une seule touche

Comportement attendu du système :

• Si j'appuie sur la touche « Espace » du clavier alors la LED doit s'allumer si elle était éteinte sinon elle doit s'éteindre (si elle était allumée).

<u>Travail 1</u> : Compléter l'organigramme ci-dessous en complétant le texte des cases et en ajoutant les flèches manquantes :

Travail 2 : Programmer et piloter le système avec mBlock

Utiliser une variable « état » et mettre état=1 lorsque la diode est allumée et état=0 lorsque la diode est éteinte

Important : Une temporisation l'hypersensibilité du système.

attendre 1 secondes

vous permettra de résoudre

Partie 3 : Commander par Bluetooth

Brancher le module de communication Bluetooth sur la broche D2 du shield Grove.

Travail 1 : La LED va être commandée à distance en Bluetooth par une tablette.

- Si on appuie sur la touche « allumer » de l'application installée sur la tablette on envoie alors par Bluetooth la chaîne de caractères « B:1 » (la variable B a pour valeur 1)
- Si on appuie sur la touche « éteindre » de l'application installée sur la tablette en envoie alors par Bluetooth la chaîne de caractères « B:0 » (la variable B a pour valeur 0)

Dans le bloc ci-dessus : Si une donnée Bluetooth est reçue, alors on affecte à la variable BT (comme bluetooth) de notre programme la valeur de la variable B qui nous a été transmise.

Autrement dit :

- Si BT=1 alors la LED doit s'allumer ;
- Si BT=0 alors la LED doit s'éteindre.

Ajouter les blocs ci-dessus au début de votre premier programme (Partie 1 : Commander avec 2

touches) juste en dessous de répéter indéfiniment, et adapter la suite du programme en remplaçant les conditions

touche espace 🔻 pressée ?

Coup de pouce 2 : Variable et Bluetooth Enregistrer votre travail dans le fichier « BT_2boutons.sb2 »

<u>Travail 2</u> :

Il peut être utile de renvoyer au smartphone l'état de la lampe.

- Lorsque la lampe s'allume on envoie une seule fois le texte B:3 ;
- Lorsqu' elle s'éteint on envoie une seule fois le texte B:4.

Compléter le programme du travail précédent avec les blocs BT adéquat:

Enregistrer votre travail dans le fichier « BT_retourinfo.sb2 »

1- Se mettre en mode connecté

Variable dynamique : Une variable dynamique est une lettre ou une chaine de caractères à laquelle on affecter une valeur qui peut varier au cours du déroulement du programme.

Ploce & variables	Nouvelle variable
	Nom de la variable:
Creer une variable	Pour tous les objets O Pour cet objet uniquement
Créer une liste	OK Annuler
Créer un bloc personnalisé	

Permet d'affecter une valeur à la variable dynamique B.

_	
	lecture normale
	grand affichage
	potentiomètre
	définir mini et maxi du curseur
	cacher

Lorsqu'on utilise le mode potentiomètre, on peut modifier manuellement la valeur de la variable. Il est également possible de définir la valeur maxi et la mini de la variable.

Bluetooth

Bloc « BT : données disponible ... »

BT: données disponibles sur le port D2 🔻

Ce bloc permet de savoir si des données sont disponibles sur le port choisi. La valeur retournée est de type numérique, « 0 » lorsqu'il n'y a pas de données disponibles et « 1 » lorsque des données sont disponibles sur le port série sélectionné.

Bloc « BT : recevoir la variable »

BT: recevoir la valeur de <Saisie libre> sur le port D2 🔻

Ce bloc permet de recevoir une valeur transmise sur le port série choisi.

Le bloc reçoit une chaine de caractère constituée de la « valeur » et utilise un préfixe pour identifier la donnée.

Par exemple pour recevoir la valeur d'un bouton poussoir n°1 issu d'une application de type APPInventor mon bloc doit être paramétré comme ci-dessous :

BT: recevoir la valeur de BP1 sur le port D2 🔻

Exemple de code avec un module Bluetooth

Sous AppInventor :